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ABSTRACT   

This work developed a simulation of a three-phase induction motor (MIT) with via the direct torque control 

(DTC) technique, which is executed in a field programmable gate array (FPGA) of the programmable logic type 

using the VHDL language. This simulation platform uses MATLAB/Simulink jointly with the DSP Builder 

software, on an Altera DE2 board. A specific methodology, using software configurations and a mixed 

simulation, allowed the verification of the behavior of the VHDL codes before their implementations on the 

FPGA device. The results of the simulations are presented and analyzed in the work. 
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INTRODUCTION 

Three-phase induction motors are heavily utilized in industrial applications due to their robustness, 

low cost, high operating speed, and low maintenance. For better efficiency of these engines, many 

direct torque control (DTC) techniques have been adopted in recent years [1, 2, 3]. In order to obtain 

an accurate control of the motor drive, several control algorithms have been widely investigated 

including field-oriented control, direct torque control, model predictive control, and generalized 

predictive control [4, 5, 6]. DTC of three-phase induction motors has gained popularity in industrial 

applications mainly due to its simple control structure. Several modifications and improvements have 

been made to the original control structure in order to overcome two major problems normally 

associated with DTC, namely the high electromagnetic torque ripple and variable switching frequency 

[2]. It is well established that these problems are mainly due to the use of hysteresis torque and flow 

controllers. For this reason, most of the methods used to overcome these problems were accomplished 

by replacing the hysteresis- with the non-hysteresis-based controllers [6, 7, 8]. 

The study of torque control strategies in three-phase induction motors has attracted a great deal of 

interest in researchers. Ibrahim et al [9] presented a new proposal to drive DTC using a fuzzy 

controller, and its results were simulated showing the potential of this strategy. Sandre-Hernandez et 

al [10] present the implementation of the DTC for a permanent magnet synchronous machine based 

on the technology of a field programmable gate array (FPGA). Pereira et al [11] propose a virtual 

teaching platform of DTC of induction motors to assist in the education of undergraduate students. 

Today, the rapid development in high-performance digital signal processors (DSP) not only replaced 

the analog technology of the conventional control method but also provides high computing 

capabilities. Recent developments in FPGA [10, 12, 13] have made it possible to combine complex 

analog and digital circuits. However, in motion control systems, FPGA technology is not that popular. 

Generally, VHDL codes are implemented in programmable logic devices, such as application-specific 

integrated circuits and especially in FPGAs. This methodology proposal allows one to verify the 

behavior of these codes before their implementations, reducing the risks of significant changes when 

implemented. 
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The contribution of this work is the development of a digital controller with a DTC algorithm applied 

to a three- phase induction motor using VHDL embedded in an FPGA, thanks to its parallel 

architecture for multiple-signal processing. 

THREE-PHASE INDUCTION MOTOR 

Clarke Transformation 

The behavior of three-phase induction motors is usually described by their voltage and current 

equations. The coefficients of the differential equations that describe their behavior are time varying 

(except when the rotor is stationary). The mathematical modeling of such a system tends to be 

complex since the flow linkages, induced voltages, and currents change continuously as the electric 

circuit is in relative motion. For the analysis of such a complex electrical machine, mathematical 

transformations are often used to decouple variables and to solve equations involving time varying 

quantities by referring all variables to a common frame of reference [2, 10]. Among the various 

transformation methods available, the well-known ones are the Clarke transformation and Park 

transformation. 

The Clarke transformation converts balanced three-phase quantities ( , ,a b c ) into balanced two-phase 

quadrature quantities ( ,  ). The Park transformation converts vectors in a balanced two-phase 

orthogonal stationary system into an orthogonal rotating reference frame (d, q). Figure 1 shows the 

three reference frames. 

 

Figure1.  Reference frames involved in Clarke and Park transformation 

Clarke and Park transformations are mainly used in vector control architectures related to permanent 

magnet synchronous machines and asynchronous machines [10]. The three-phase quantities are 

translated from the three-phase reference frame to the two-axis orthogonal stationary reference frame 

using the Clarke transformation as shown in Figure 2.  

 

Figure2. Clarke transformation from three phases to two phases 
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The Clarke transformation is expressed by Equations 1 and 2: 
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The transformation from a two-axis orthogonal stationary reference frame to a three-phase stationary 

reference frame is accomplished using an Inverse Clarke transformation as shown in Figure 3. The 

Inverse Clarke transformation is expressed by the following equations: 
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Where: 

a
V , b

V , c
V  are the three-phase quantities, and V

 , V
 are the stationary orthogonal reference frame 

quantities. 

 

Figure3. Inverse Clarke transformation from two phases to three phases 
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The matrix to transform the three vectors a
V , b

V , and c
V into V  , V

  is [10]: 
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Mathematical Model of the MIT 

In order to obtain a simplification of the MIT model and a reduction of the number of variables, which 

describe the dynamic behavior of the motor, the three-phase coordinate system is projected to an 

orthogonal coordinate plane [2, 14]. In this methodology, the three-phase system (three axes with a lag 

of 120° between each other) is replaced by an orthogonal system. The MIT will be seen to consist of 

only two spatially lagged 90° windings on the stator and rotor. Based on Figure 3, the new axis system 

is called αβ and has indices α and β. 

The magnitudes involved in the fundamental expressions of motor voltage are related both to the 

reference of the stator and to the reference of the rotor. Thus, it is necessary to obtain a single and 

common reference for the stator and rotor. As the DTC technique controls stator quantities such as 

currents, voltages, and flow, to facilitate the mathematical modeling of MIT, we adopted the stationary 

reference. All the values evaluated are based on the mathematical model of the motor in a steady-state 

condition. Equations 9 –13 are fundamental to the DTC strategy to calculate the stator flow linkage 

and torque.  

Equation 9 presents the space vector of the stator voltage (
s

V
 



) where  
s

i
 



 is the space vector of the 

stator current, 
s 





 is the concatenated stator space flow vector, 
s

R  is the winding resistance of a 

stator phase. 

                                                                                                                    (9) 

Equation 10 shows the space vector of the rotor voltage (
r

V
 



) where  
r

R  is the resistance of one 

rotor phase (equivalent winding) to the stator, 
r

i
 



 is the space vector of the rotor current, 
r 





 is the 

concatenated rotor flow space vector, 
p

Z  is the pole pair number, 
m e c

w  is the mechanical speed of the 

motor. 

                                                                                 (10) 

In Equation 11 
s 





is the concatenated stator space flow vector where 
s

L is the stator inductance, 

H
L  is the mutual inductance between stator and rotor, 

s
i
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 is the space vector of the stator current, 

and  
r

i
 



is the space vector of the rotor current. 

                                                                                                                   (11) 
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Equation 12 presents the concatenated rotor flow space vector (
r 





) where 
H

L is the mutual 

inductance between stator and rotor, 
r

L  is the rotor inductance, 
s

i
 



 is the space vector of the stator 

current, and  
r

i
 



 is the space vector of the rotor current.  

                                                                                                                   (12) 

In Equation 13 
d

m  is the electromagnetic torque where 
p

Z is the pole pair number, 
s

  is the 

component α of Stator flow, 
s

i


 is the component β of stator current, 
s 

 is the component β of Stator 

flow, and 
s

i


 is the component α of stator current. 

                                                                                                         (13) 

VOLTAGE SOURCE INVERTER 

According to [10], the topology of a voltage source inverter (VSI) is as shown in Figure 4. 

 

Figure4.  Scheme of voltage source inverter 

It is comprised of six insulated gate bipolar transistors (IGBTs) and six freewheeling diodes. 

Assuming that in every instant the switching devices can accept only one of the two possible states on 

(1) or off (0), the VSI has only eight possible switching states, generating six active voltage space 

vectors (AVSVs)  and two zero voltage space vectors (ZVSVs) . Using the Clarke 

transformation given by Equation 8, the states of the inverter can be mapped onto the α-β complex 

plane, which are shown in Fig. 5. 

The space sector N is obtained from the angle s
  between the stationary reference and the stator 

flow (Equation 14), and is limited by Equation 15: 

1 s
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and 
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( 2 3) (N ) ( 2 1)
6 6

N N
 

                                                                                                          (15) 

Where N is the space sector, and   is the space angle. 

 

Figure5. Voltage space vectors generated by the VSI 

PRINCIPLE OF DIRECT TORQUE CONTROL  

In Figure 6, a summary block diagram of the DTC technique is presented using hysteresis 

comparators, a motor estimation model, and switching logic (vector table). The main objective of this 

technique is to control the torque and the flow of the stator using the comparators, ensuring a fast 

torque response. The vector table is used to select the voltage vector to be applied to the stator, 

determined the switches that must be activated in the inverter (space modulation). The choice of the 

voltage vector is made to maintain the stator torque and flow within the limits defined by the 

hysteresis comparators. There are six possible AVSVs  and two ZVSVs , which are 

chosen based on the error between the torque (  ) and flow ( ) reference values and the spatial 

sector of the stator flow ( 1 s

s

tg









 

 
 

). 

The selection of the optimal AVSV or ZVSV [10] is based on the optimal switching table listed in 

Table 1, where the estimated values of torque and flow are used to process the torque error ( ) and 

flow error ( ). 

Table1. Table of voltage vectors to be applied to the inverter 

    Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 

 1 
2

v  
3

v  
4

v  
5

v  
6

v  
1

v  

0 0 
7

v  
0

v  
7

v  
0

v  
7

v  
0

v  

 -1 
6

v  
1

v  
2

v  
3

v  
4

v  
5

v  

 1 
3

v  
4

v  
5

v  
6

v  
1

v  
2

v  

1 0 
0

v  
7

v  
0

v  
7

v  
0

v  
7

v  

 -1 
5

v  
6

v  
1

v  
7

v  
3

v  
4

v  

The currents measured at the motor input ( ,
a b

i i ) are inputs from the “motor model” block, which 

estimates the torque and the stator flow at that instant, in addition to the space sector where the stator 

flow is located. The estimated stator torque (
d

m ) and flow (
s 

 ) are compared to their respective 
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references ( ,
d r e f s r e f

m  ). Comparison errors are inputs from the hysteresis comparators (usually two 

levels for the flow and three levels for the torque), which verify that the torque and flow are within 

their given limits. The outputs of these comparators (  and  ), as well as the stator flow space 

sector, are inputs from the “Vector Table,” which determines the proper switching of the inverter to 

maintain stator flow and torque close to its reference values. Figure 6 shows the structure of the direct 

torque control system (DTC). 

 

Figure6. Structure of direct torque control system 

SIMULATION PLATAFORM  

The simulation platform consists of two software programs: MATLAB/Simulink and DSP Builder. 

MATLAB/Simulink is responsible for simulating the power part of the drive and control, whereas the 

DSP Builder software converts the MATLAB/Simulink codes to the VHDL language and allows the 

loading of the codes into the FPGA device (DA COSTA, 2014). 

After installation, the DSP Builder software adds two sets of new functional block libraries to the 

Simulink software: (i) Altera DSP Builder Advanced Blockset and (ii) Altera DSP Builder Blockset. 

The DSP Builder software integrates the MATLAB/Simulink   in a single environment, which allows 

simple and direct: (i) automatic implementation of the DTC application in VHDL; (ii) simulation of 

the created system; (iii) conversion of the algorithm into RTL code; (v) creation of the project in the 

Quartus II software and simulation of the generated RTL code using the same test vectors used in 

SIMULINK; (vi) compiling of the project; (vii) loading into the FPGA hardware; (viii) testing of the 

device with the created DTC algorithm. Figure 7 illustrates the design flow with the 

MATLAB/Simulink and DSP Builder software. 

 

Figure7.  Design flow with the MATLAB/Simulink and DSP Builder 

DTC Strategy Simulation 

According to the DTC structure shown in Figure 6, the motor model block, estimation of flow and 

torque block, current acquisition, and inverter block are performed and simulated in the 
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MATLAB/Simulink environment. Stator torque and flow controls are performed using the torque 

hysteresis comparator and flow hysteresis comparator block, which are, along with the vector table 

block, implemented and simulated in the DSP Builder software. 

In the DTC control algorithm block, the motor model calculations and their respective comparisons 

with their reference values are performed, in addition to determining the space sector where the flow 

is. The outputs of the hysteresis comparators, in addition to the spatial flow sector, are inputs to the 

part of the program responsible for the inverter switching table. This table indicates the best 

alternative for the DTC at that instant and triggers the inverter keys to maintain the desired control. 

The simulated inverter uses ideal switches, since the IGBT transistors are considered as ideal keys for 

the frequency level used in the simulation. The switching frequency chosen was 20 kHz. The 

instrumentation part (A/D converter) was performed and simulated in the MATLAB/Simulink 

environment. Stator currents enter as binary data in the DTC control algorithm. For resolution of the 

A/D converter, 16 bits were assumed. The sampling frequency used in the A/D converter was 40 kHz. 

The control algorithm that controls the motor based on the DTC strategy has been divided into two 

parts. The first part, responsible for calculations, operates at a frequency of 40 kHz. The second part, 

which contains the inverter switching table, operates at a frequency of 20 kHz. Parameters of 

induction motors used in the simulation are listed in Table 2. Figure 8 shows the DTC strategy 

simulation. 

Table2. Parameter of Induction motors 

Rated Power 1.5 h p  Rotor Inertia  0.027 
2

k g m  

Pole Pairs 2 Mutual Inductance 0.33615 H  

Stator Resistance 7.56   Coefficient of Friction 0.000124  

Stator Inductance 0.35085 H  Reference Torque 10 .N m  

Rotor Resistance 3.84   Reference Flow 0.8 W b  

Rotor Inductance 0.35085 H  Load Torque 6 N  

 

Figure8. DTC strategy simulation 

Test Results Simulation 

In order to verify the proposed DTC strategy, simulation results are presented. The Altera DE 2 board 

with a Cyclone III device is used to execute the DTC control algorithm. Fig. 9 (a) shows the 

simulation result of the DTC algorithm for positive and negative references of the magnitude of the 

estimated stator flow and its reference. Fig. 9 (b) shows the simulation result of the DTC algorithm for 

positive and negative references of the estimated electromagnetic torque and its reference. To perform 

the test of DTC, a positive reference torque is applied to the induction motor with a reference of 0 

N·m during the initial time, and 10 N·m at 0.25 s. 
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Figure9. (a) Simulation results of stator flow estimated, and (b)Electromagnetic torque estimated by the 

proposed DTC algorithm  

Fig. 10 (a) shows the simulation result of the DTC algorithm for positive and negative reference of 

stator currents. In Figure 10 (a), a change can be observed between two phases at a time equal to 0.25 

s due to the change in the torque direction of the motor. The period between the instants 0.3 s and 0.4 

s shows the behavior of the phase currents when the velocity is reduced. In Figure 10 (b), the rate of 

growth of the motor speed is changed at 0.1 s when a load of 6 N·m is coupled to the shaft. At a time 

of 0.25 s, the torque reference changes direction, causing the motor speed to decrease and after a short 

time interval it change its direction of rotation. 

Figure10. (a) Simulation results of three-phase stator currents, and (b) Motor Speed by the proposed DTC 

algorithm 

CONCLUSION  

This paper has presented the digital design and simulation of the DTC strategy using VHDL language. 

A DSP design for motor control has been developed and simulated for the particular case of the DTC 

algorithm of a three-phase induction motor. A specific methodology, using software configurations 

and a mixed simulation, allowed the verification of the behavior of the VHDL codes before their 

implementations on the FPGA device. The methodology defined the digital adaptation of the DTC 

algorithm, taking account of the influences of digitization on computed values. An optimized DSP 

algorithm and a specific fixed-point format have been studied and defined. The implementation, 

which proved that the DTC strategy, was accomplished using the combination of a 

MATLAB/Simulink and DSP Builder software. This project addressed a way of structuring and 

simulating a DTC algorithm. The target technology was FPGAs, which have been growing steadily 

and has been taking up space in the industrial market worldwide 
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