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ABSTRACT 

In this study, linear frequency modulated (LFM) signals are reconstructed by compressive sensing (CS) making 

the signals sparse in appropriate discrete fractional Fourier transform (DFrFT) domains. We first transform an 

LFM signal into several sparse structures using DFrFT matrix, and select the optimum order in which the signal 

is sparsest structure. Then, we employ CS by taking a few random measurements. CS simulations show that we 

successfully reconstruct the signal and obtain the minimum mean square error (MSE) in the optimum DFrFT 

order. 
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INTRODUCTION 

Most of the signals are sparse or compressible so they have an appropriate transform domain with a 

small number of sparse coefficients. Thus, these signals can be made sparse by expressing them as 

linear sums of basis functions, such as sinusoidals, wavelets, canonical basis, and other basis. An 

important point of the compressive sensing (CS) method is to obtain the measurements from the 

projection region defined as compressed region. Then reconstruction is provided by optimization. The 

sparse structure, measurement number, optimization method are important sub-sections in order to 

reconstruct the signals by CS [1-5].  

In the recent years, CS via fractional Fourier transform (FrFT) domains is very interesting. In [6], the 

calculation of the discrete fractional Fourier transform (DFrFT) matrix differs from the calculation of 

the DFrFT matrix used in this study and the computation of DFrFT is achieved by sampling FrFT. At 

another studies [7, 8], where some parts of the signal is missing or incomplete, it has been supposed 

that a prior information about the signal is at hand, and it is tried to recover signals by recurrent 

algorithms, such as projection onto convex sets.  

In this study the DFrFT matrix derived from [9] is employed. The linear frequency modulated (LFM) 

signals are reconstructed by CS in optimum DFrFT order. The simulation figures and mean square 

errors (MSE) table are given. The study is concluded in last part and determined that the CS with 

optimum ordered-DFrFT matrix can be efficiently used for LFM-type signals. 

COMPRESSIVE SENSING    

n - length LFM-type signal x with k-sparse coefficients is given as 

sx                                                                                                                                                                     1 

where Ψ is the basis matrix. 

If m measurements are taken from random projections onto Φ which is projection matrix as follows  
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sxy                                                                                                                                        2 

In this study  is the linear sum of the DFrFT basis. 

sWy
a

n
                                                                                                                                              3 

where 
a

n
W is the a-th order DFrFT matrix [9]. 

The choice of DFrFT order results in a better sparse representation and the more sparsity results in a 

better reconstruction and thus better CS is obtained. 

We transform a wide-band LFM-type signal into a narrow-band signal in the DFrFT domain with 

appropriate order to obtain the sparse coefficients for use in CS. We apply CS, in which we take 

random quarter quantity of the whole. As a result of the convex optimization [10], we reconstruct the 

signals, in which the original and reconstructed signals are shown in Figure 1-6.  

The deformation between the original and reconstructed signals can be calculated by the mean square 

error as follows: 

 
21

 
tedreconstrucoriginal

xx
n

MSE                                                                                                                        4 

SIMULATIONS 

A 128 length LFM-type signal that is highly dense in time domain is transformed into discrete 

fractional Fourier domain to form the sparse structure. In order to examine the effect of the DFrFT 

order, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 order values are investigated, in which the optimum DFrFT order 

is obtained to be 0.7 to get the signal in its most sparse structure. The original and the reconstructed 

signals are plotted together for a better illustration.  
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Figure1.  CS with DFrFT order=0.1                   Figure2.  CS with DFrFT order=0.3 
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Figure3.  CS with DFrFT order=0.5     Figure4.  CS with DFrFT order=0.7 
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Figure5.  CS with DFrFT order=0.9 Figure6.  CS with DFrFT order=1.1 

MSE between the original and reconstructed signals for each figures are given in Table 1.  

Table1. The MSE of CS 

DFrFT order MSE 

0.1 0.2203 

0.3 0.2288 

0.5 0.2082 

0.7 0,0009 

0.9 0.1891 

1.1 0.1767 

CONCLUSION  

LFM-type signals are not sparse in time domain. However, they are sparse in optimum DFrFT 

domain. In this work, we propose CS, in which we preprocess the LFM-type signals decomposing it 

sparsely with optimum-order DFrFT. Simulation results show that minimum MSE error is obtained in 

the optimum DFrFT order.  This method is advantageous for saving and storing information 

effectively in radar, sonar, communication systems where LFM-type signals are employed.  
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